

Will Genomics solve our problems?

Influence of the Environment

Dr. Stefan Rensing
Vereinigte Informationssysteme Tierhaltung w.V. (vit), Verden/Germany
2016 World Holstein Conference, Buenos Aires, March 30th

 $N: Veröffent lichungen \ 2016 \ 160330 \ WHFF_Genomics_and_environment.ppt x$

Genomic Selection: Revolution in dairy cattle breeding

a. 1950 – 2009:

 Holstein breeding based on daughter proven A.I. bulls (test-waiting-proven bull system)

- from 2010 onward:
 - Selection based on genomic proofs
 - Same reliability for males and females
 - >90% young sires of sons
 - >90% yearling heifers as bull dams
 - 50-90% use of young genomic A.I. bulls in cow population

■ →Breeding based on genomic selection

Doubled genetic progress through Genomic Selection

- Advantages Genomic Selection
 - Shorter generation interval
 - Effective selection of females / bull-dams for all traits

International comparability

Classical breeding values

- Exclusively available on scale of owner country
- Because phenotypic information from daughters as base for genetic evaluation only available here
- → difficult to compare genetic level of animals across countries
- \rightarrow need for objective comparison = MACE = <u>Multiple Across Country Evaluation</u>
 - Limitations of MACE
 - exclusively A.I. bulls from participating countries
 - Loss of information/reliability by conversion (e.g. through different trait definition)

New possibilities for international exchange

Genomic breeding values

- Based on SNP as information source
- SNP can be exchanged easily
- and used in any national genomic evaluation system
- I Image of (exchanged) SNP on any scale
 - fully comparable gEBV of foreign animals with domestic animals
 - for all traits in this specific country
 - independent from existence or quality of gEBV in country of origin
- no more 'conversion' necessary with loss of information
- but
- For correct interpretation of gEBV on foreign scale(s)
- Good knowledge of foreign system necessary

- Main Holstein countries work with joint bull reference populations
 - North-American Consortium: USA+CAN+ITA+GBR
 - EuroGenomics: DEU+FRA+NLD+DFS+ESP+POL
- Effectivity of joint reference population
 - is dependent on number of bulls

- and
- on EBV reliability of each bull

- Effectivity of joint reference population
 - is dependent on number of bulls
 - and on EBV reliability of each bull
- Domestic proven reference bull = high reliability
 - Direct daughter proof
- Foreign reference bull = reduced reliability
 - From foreign country 'converted ' daughter proof
 - Information loss by conversion dependent on Interbull correlations (MACE)

Protein kg (IB 04-2016)							
	USA	NZL	IRL	ISR	ZAF		
DEU	0.87	0.70	0.73	0.80	0.82		
USA		0.70	0.75	0.83	0.80		
NZL			0.84	0.76	0.70		
IRL				0.68	0.73		
ISR					0.83		

	Longevity (IB 04-2016)						
		USA	NZL	IRL	ISR	ZAF	
DEL	J	0.87	0.55	0.72	0.54	0.86	
USA	١		0.56	0.76	0.66	0.88	
NZL	•			0.56	0.40	0.66	
IRL					0.44	0.87	
ISR						0.53	

- Second contribution contractions of the second contraction of the second contractio
 - i.e. countries with high (former) test capacity: USA, DEU,
- differences in true reliability of gEBV across countries are much bigger than for daughter proven bulls
 - A bull with 100 daughters has approx. same reliability in all countries
- Given national reliabilities for gEBV not necessarily reflect 'true' reliability/ predictability
 - No harmonization of estimating gEBV reliability so far
 - → national reliabilities of genomic proofs are not directly comparable

How can smaller countries use genomic selection?

Effective own bull reference population often not possible

- Needs thousands of daughter proven bulls for all traits
- Cooperation with other countries i.e. joint reference populations?
 - Precondition: participating in MACE and high correlations to partner countries
 - → often not given
- → hard to develop effective national bull reference population and genomics

Alternative:

Use foreign genomic system and scale for genomic selection of domestic animals

Foreign genomics for selection of domestic animals

Advantages

- High reliability of genomic proofs
- All traits on chosen base
- Technically easy and relatively cheap

Disadvantages

- Foreign scale
- Are (differences in) gEBV on foreign scale relevant for the domestic population?
- How important are 'genotype-environment-interactions'?
 - Science hardly detected major interactions
 - Low genetic correlations in MACE e.g. between proofs from grazing and intensive systems seem to indicate differences
 - but often weak genetic links
 - and differences in trait definitions

How can smaller countries use genomic selection?

Countries without own genetic evaluation

- gEBV on foreign scale give chance for advanced selection in own population
- And to compare genetic quality of own population to other populations/countries
- Countries with classical genetic evaluations but without genomics
 - Possibility to double genetic progress by genomic selection
- How to select the 'right' country scale
 - Most effective reference population
 - Good genetic links to own population
 - All for domestic population important traits available
 - Similar production systems
- Genomic selection based on effective foreign genomics is superior compared to own genomics with limited (true) reliability

How can smaller countries use genomic selection?

Genomics on foreign country scale: effective but ...

- ... it's not my scale
 - e.g. classical domestic EBV and foreign gEBV on different scales (diff. traits)
- Possible solution for countries with domestic classical evaluation
 - Genotype your (few) proven bulls and sent SNP to foreign genomic system
 - Use the relation of domestic EBV and foreign gEBV for calibration/conversion of foreign gEBV to domestic scale
 - Ranking of animals by gEBV and relative distance between animals is not changed

Redbull P (gRZG 117) 1st German genomic young RDC bull Based on gEBV from DFS system

Cow reference population as chance?

The future will be cow reference populations

- Because less new daughter proven bulls and highly pre-selected
- Only possibility to introduce new traits
- Projects in some countries
 - NLD: FokerijdataPlus
 - DEU: KuhVision
 - USA: Clarifide plus
 - ...
- Cow reference population
 - Genotyped 'commercial' cows with many genotyped herd mates
 - With well recorded pedigree and performance data
 - 5-8 cows just as effective as 1 daughter proven bull with 100 daughters
 - → e.g. 50,000-80,000 cows are as effective as 10.000 reference bulls
 - Sould be possible for populations without long history of bull testing programs
 - → could enable new co-operations

Future of Genomics from West-European perspective

Selection in breeding programs 100% based on genomics

- Almost 100% use of young genomic sires of sons
- intensive selection of bull dams among genotyped yearling heifers
- Intensive selection among resulting male candidates to become A.I. bull
- Use of young bulls for >2/3 of inseminations

DEU (2015): >70% young bulls 15 most used bulls: 10 young bulls

Goaway (Gold Chip x MOM x Bolton) 32,160 1st inseminations 2015 #1 use of all HOL bulls in DEU

Future of Genomics from West-European perspective

Selection in breeding programs 100% based on genomics

- Almost 100% use of young genomic sires of sons
- intensive selection of bull dams among genotyped yearling heifers
- Intensive selection among resulting male candidates to become A.I. bull
- Use of young bulls for >2/3 of inseminations
- Introduction of new functional traits by cow reference populations
 - More direct health traits
 - Feed efficiency
- Classical data collection from DHI/classification and genetic evaluation remain important
 - For validation of genomic predictions

IT-Solutions for Animal Production

Doubled genetic progress through Genomic Selection

- Advantages Genomic Selection
 - Shorter generation interval
 - Effective selection of females / bull-dams for all traits

IT-Solutions for Animal Production

Doubled genetic progress through Genomic Selection

- Advantages Genomic Selection
 - Shorter generation interval
 - Effective selection of females/bull dams for all traits

If genomic predictions are correct/unbiased

- Predicting ability of breeding values is expressed by 'reliability'
 - 'Reliability' is estimated
- Good international harmonization for classical breeding values
 - e.g. among countries in Interbull
- Given reliabilities for genomic breeding values are <u>not</u> comparable:

Country	n bulls ref. Pop.	rel. production	rel. conformation
DEU	27829	73%	52%
FRA	27273	64%	63%
NLD	26532	69%	62%
DNK	25636	70%	75%
ESP	25290	68%	71%
CAN	25056	71%	67%
USA	25056	73%	71%
GBR	23759	68%	66%
ITA	23259	75%	69%
CHE	са. 3000	64%	62%
IRL	са. 3000	65%	?
POL	2748	75%	65%

Reference populations 12-2014

■ → for conversion gEBV Interbull 'adjusts' national rel. with size reference pop.

The role of Interbull in Holstein Genomics

- Interbull converts daughter proofs to all participating country scales (MACE)
 - the base for using foreign bulls as reference bulls
- Interbull approves national genomic evaluation systems
- Interbull converts genomic proofs to all participating country scales (GMACE)
 - To countries having no national genomics
 - To countries with national genomics
 - → loss of reliability through conversion dependent on country correlations
- I → for countries with national genomics: exchange of SNP and direct gEBV from the national evaluation system results in higher gEBV reliability