

Selection for resistance to paratuberculosis in Holstein cattle

Marie-Pierre Sanchez

marie-pierre.sanchez@inrae.fr

Bovine paratuberculosis or Johne's disease

Endemic, contagious, and incurable disease due to Mycobacterium avium subsp. paratuberculosis (MAP)

Early contamination

Non-clinical cases

Clinical cases

Bovine paratuberculosis or Johne's disease

Serious economic consequences & adverse effects on animal welfare

Very difficult to control disease

 \blacksquare Long latency period

Gut lesions

☑ No effective treatment, restricted vaccine

☑ Diagnostic tests (fecal culture, serum/milk ELISA, fecal PCR...) have varying sensitivities/specificities depending on the stage of infection => need to repeat testing

A better genetic resistance may help to control the disease

Rapid weight loss

Earlier studies (PICSAR/PARADIGM)

1644 Holstein Cows

with concordant & reliable statuses were genotyped

	Holstein
Cases *	806
Controls	838
Total	1644
* incl. clinical cases Clinical symptoms & MAP in feces	229

Earlier studies (PICSAR/PARADIGM)

GWAS from imputed whole genome sequences From 1000 BG population

- RUN6 published in GSE in 2020
- RUN8 presented at EAAP in 2021

Best candidate SNPs added on the EuroGMD BeadChip

Sanchez et al. Genet Sel Evol (2020) 52:14 https://doi.org/10.1186/s12711-020-00535-9

RESEARCH ARTICLE

Open Access

Identification of the ABCC4, IER3, and CBFA2T2 candidate genes for resistance to paratuberculosis from sequence-based GWAS in Holstein and Normande dairy cattle

Marie-Pierre Sanchez^{1*}, Raphaël Guatteo², Aurore Davergne³, Judikael Saout¹, Cécile Grohs¹, Marie-Christine Deloche^{1,4}, Sébastien Taussat^{1,4}, Sébastien Fritz^{1,4}, Mekki Boussaha¹, Philippe Blanguefort⁵, Arnaud Delafosse⁶, Alain Joly⁷, Laurent Schibler⁴, Christine Fourichon² and Didier Boichard¹

First genomic predictions after

estimating SNP effects with a Bayesian approach but the accuracy in a validation population of Holstein cows was too low for selection purpose

Towards a Single Step approach

New large dataset in Holstein

~ 250,000 cows with serological statuses (infected / non-infected) incl. a few thousand with genotypes

- → Many cows with **statuses but not genotyped**
- Among the cows with statuses, most have sires and/or maternal grand-sires with genotypes

To consider all this information, we applied a **Single Step** approach that can help in obtaining more accurate genomic predictions

Objectives

By combining all the available data in Holstein in a Single Step GBLUP (ssGBLUP) approach, a two-fold objective :

- 1) To further investigate the **genetic determinism** of resistance to paratuberculosis (h² & QTL)
- 2) To estimate **genetic trends**, **reliability**, and **risk factors** associated with genomic predictions

Data filtering

247,375 Holstein cows with statuses

Incl. 4100 cows PICSAR/PARADIGM + cows with statuses deduced from serological tests (Idexx & Idvet ELISA) recorded since 2015

Non-infected

d 228,337

Infected

Selection of cows

Exposed to MAP

- controls were at least 3 years old
- herds with at least one infected and one non-infected cow born in the same year

56,766 Holstein cows from 3114 herds

Single Step approach

Pedigree		Total number of animals	Animals with genotypes
	Animals in the pedigree	161,253	12,431
	Incl. cows with statuses	56,766	4031
Model	$\mathbf{y} = \mathbf{X}\mathbf{\beta} + \mathbf{Z}\mathbf{a} + \mathbf{e}$		

- **y** = vector of statuses (1 for controls / 0 for cases)
- β = vector of fixed effects herd x birth year, birth month, ELISA test
- **a** = vector of random genetic effects **a** ~ $N(0, H\sigma_a^2)$
- e = vector of random residual effects e ~ $N(0, I\sigma_e^2)$

→ Estimated breeding values (ssEBV) for all animals in the pedigree

Heritability of resistance to paratuberculosis

 $h^2 = 0.14$

h² very moderate

But ~ h² milk cell counts & > h² clinical mastitis

And consistent with values reported in the literature (0.03 – 0.27; Brito et al. 2018)

Realized genetic trends

ssEBVs means (in genetic SD) per birth year:

cows with statuses born between 2008 and 2017

bulls born between 2000 and 2014 with at least 10 daughters with statuses

Bulls
Cows

Moderate and favourable evolution of ssEBVs On average: + 0.6 genetic SD between

bulls born in 2000 and bulls born in 2014

Reliability of genomic predictions (GP)

Training / validation populations to estimate reliability of GP

Relative risk factor estimated in the validation population

- = relative risk of infection for a cow
 - 0.5 point classes

Ratio of the proportion of infected animals in a given class to that in the central o class

Relative risk factor estimated in the validation population

- = relative risk of infection for a cow
 - 0.5 point classes

Ratio of the proportion of infected animals in the class to that in the central o class

Relative risk factor estimated in the validation population

- = relative risk of infection for a cow
 - 0.5 point classes

Ratio of the proportion of infected animals in the class to that in the central o class

Relation between the probability of infection and GP depending on the incidence in the herd (training population)

Relation between the probability of infection and GP depending on the incidence in the herd (training population)

Relation between the probability of infection and GP depending on the incidence in the herd (training population)

QTL detected via ssGWAS

From effects estimated in ssGBLUP => % genetic variance (%GV) explained by windows of SNPs

% genetic variance

0.35

0.30

0.25

0.20

0.15

0.10

0.05

$$\% GV_i = \frac{1}{n\sigma_{\alpha}^2} \, \widehat{a}'_i \, \widehat{a}_i$$

 $\hat{a}_i = M_i \hat{s}_i \hat{a}_i$ = vector of genomic values for the ith region M_i = matrix of SNP content in region **i**

 \hat{s}_i = vector of estimated effects of the SNPs in the region

18

16

20 21

23

25

 σ_{α}^2 = variance of ssEBVs

Chromosome

Confirmation of QTL detected on chromosomes 1, 3, 5, 12 and 23 + detection of novel QTL on chromosomes 20, 21 et 27

20

Conclusions

Interest of a Single Step approach for the implementation of a genomic evaluation on resistance to paratuberculosis in Holstein

Sanchez et al. Genetics Selection Evolution (2022) 54:67 https://doi.org/10.1186/s12711-022-00757-z

RESEARCH ARTICLE

New insights into the genetic resistance to paratuberculosis in Holstein cattle via single-step genomic evaluation

Marie-Pierre Sanchez^{1*}, Thierry Tribout¹, Sébastien Fritz^{1,2}, Raphaël Guatteo³, Christine Fourichon³, Laurent Schibler², Arnaud Delafosse⁴ and Didier Boichard¹

Open Access

Conclusions

Genomic predictions weekly calculated since April 2022 Not included in the total merit index because their use depends on the herd status

Mainly used in infected herds:

- Culling of very sensitive females
- Higher control of sensitive cows
- Use of resistant bulls

Work in progress in **Normande** with an extension of the reference population (genotyping of cows with statuses)

Methodology applicable to other breeds

Thank you

