

Camera technology to bring large scale data from commercial herds

Presented by: Jorn Rind Thomasen

Senior Project Manager, VikingGenetics

Jan Lassen and Søren Borchersen, VikingGenetics

15th WHFF Conference Puy du Fou, France

The vision and challenge

- No doubt that camera technology can produce large scale data from commercial herds
- The challenge is to transform the information content in the pictures or videoes to valuable phenotypic information

Building strong genomic reference populations for genetic improvement

Many applications in animal and plant production

- High throughput **phenotyping in plants**
- Drone technology
- Tracking in pigs and poultry
- Milking Robots
 - 3D camera for cow movements and teat detection
- **CattleEye** lameness BCS Mobility

How can camera technology add value?

- Hard to measure (expensive) traits
- Lower phenotyping costs -> increasing amount of registrations (high throughput phenotyping)
- Round the clock 24/7 registrations
- Objective and precise compared to subjective phenotyping
- Sequence of pictures or videosnapshots compared to pointregistration
- Survelliance

How can camera technology add value?

Document production systems (ESG and climate)

Powerful tool combined with Al-Technology and robot development

The intelligent "eye on the cow"

EXAMPLES FROM APPLICATIONS IN DAIRY CATTLE

CFIT - Cattle Feed In Take

Registrations of individual cow's feed intake and weight

CFIT – Aim and purpose

- To develop a 3D camera system that can measure feed intake at individual cow level at each visit
- The system may not:
 - Disturb **daily routines** on farm
 - Disturb cow behavior
- Should be same system as for identification
- Data to be used for breeding and management

The CFIT system – registration 24/7

Registrations are based on **3D images** and the use of **artificial intelligence**

Cow identification and weight measure

Measure of individual feed - Identification

3D Camera – time of flight

Cow Identification from Contour to MASK-CNN

• ID accuracy with contour model 95-98% in Jersey

• Change of algorithm from contour to MASK-CNN

• Including colour, patterns, contours in model

• ID accuracy +99% in all three breeds

Contour

Installations and Agreements with test herds

Data flow and amount 2023

cameras

90,000,000+

images per day

700.000+

feed visits per day

meals per day

Integrated system

- Algorithms
- Hardware
- Fit into the barn
- Automized system surveillance
- Event detection
- Data integration

Validation study

Validation study at Aarhus University

Challenge the camera system with **different feed densities** – especially with different silage types

- Measure of feed from scales and cameras
- 4 diets:
 - 1. grass silage & barley
 - 2. grass silage & dry beetroot
 - 3. maize & barley
 - 4. maize & dry beetroot

• 48 HOL cows in trial

Giagnoni et al.,2022

High correlation between kg and volume

Giagnoni et al.,2022

Weight Predicted versus Scale

1,329

Measurements from 102 Jersey cows

460 kg

Average weight (350-650 kg)

4000 contour points per picture

model

Predicted

Weight - scale

Preliminary genetic analysis

Data

Breed	Trait	Number of records	Mean	Minimum	Maximum
Holetoin	DMI	65,393	27.7	12.7	40.9
	BW	65,293	675.8	448.4	905.0

Cows with phenotypes: **2,668**

Cows with genotypes: **1,824**

Manzanilla-Pech et al., 2023

Heritabilities

Trait	Pedigree	Genomic
DMI	0.23 (0.02)	0.25 (0.02)
BW	0.47(0.05)	0.51(0.04)

Manzanilla-Pech et al., 2023

CFIT registrations in the Saved Feed index

for the three breeds in early 2025

CFIT and management

Antal koer

Development of Management software used in the CFIT test herds

Feeding table

18-5-2021

Bord 1 🗸 🗸

Herd level

Cow level

Ko nr.	EKM (kg)	Tid siden måltid (tt:mm)	Lakt.nr	Dage fra klvn
056762 - 04737	40	15:41	3	181
056762 - 04542	51	9:41	3	159
056762 - 05376	32	7:53	1	177
056762 - 03879	50	5:23	5	127
056762 - 03752	56	5:15	5	123
056762 - 03393	0	5:10	7	8
056762 - 04594	44	4:52	3	177
056762 - 05374	44	4:30	1	156
056762 - 05398	37	4:24	1	114
056762 - 05024	43	4:22	2	130

Køer med længst tid siden sidste måltid

Better claw health with use of Artifical Intelligence

Project period: 2023-2026

Peter Raundal, SEGES Innovation

Mælkeafgiftsfonden

Motivation

- In Denmark yearly more than **700,000 registrations** of hoof treatments
- Approximately 50% of all hoof treatments have at least one claw diagnosis
- Today registrations are done **manually**

- Automated registrations will initiate more registrations of higher quality giving the farmer a better tool to increase claw health in own herd
- More accurate breeding values for claw health

Installations on the hoof trimmer box

Two antenna for recording electronic eartag

How does it work?

- Cameras record during hoof trimming
- Al-model trained to recognize:
 - A hoof (extract all other noise)
 - Hoof trimming the cow registrated as trimmed
 - Model is trained to recognize 24 different claw diagnoses
 - Treatment claw bandage and/or shoe
- Registrations uploaded to the central cattle database (DMS)

Improved animal welfare and production with use of new technologies (WelCowTech)

Project in pipeline (2024 - 2027)

Lars Arne Hjort Nielsen, SEGES Innovation

Economic value

- Actions which increase the cows laying time and milk production (feeding and grouping)
- Early detection of sick and lame cows

Saving of workload

- Surveillance of cows through Al
- Detection of cows for hoof trimming and observation

Assurance of production quality

- Document animal welfare in an objective manner
- Document variation in behaviour
- Reduced climate impact through increased longevity

To sum up

Camera Technology can produce large scale data from commercial herds and provide **new phenotypes** valuable for both management and breeding

Camera technology combined with **AI technology** is an area **under huge development**

Important future tool to **improve management** and **genetics** in dairy production

Thank you!