

11. WHFF Methane Emissions presented by Martino Cassandro 09th September 2024

The first coordinated approach to methane mitigation funding, focussing on the energy, agricultural, and waste sectors which account for 96% of human-caused methane emissions.

The Global Methane Hub will contribute to reducing global methane emissions 35% by 2030 and 50% by 2050, on a baseline of 2010 levels.

ENTERIC FERMENTATION R&D ACCELERATOR

Public

Raise prominence of methane

Accelerate methane

national action

policy at the global level

to support and accelerate

Steer public and private finance towards methane mitigation

Tracking emissions with greater transparency and access to data

The largest-ever, globally coordinated public-good investment in breakthrough research tackling livestock methane emissions.

Philanthropy

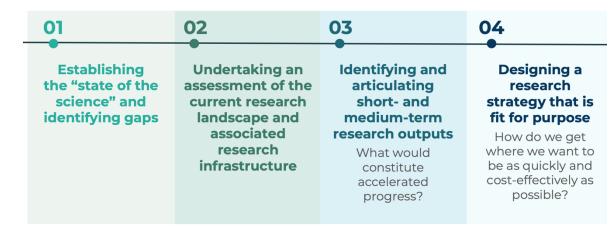
SCIENCE OVERSIGHT COMMITTEE

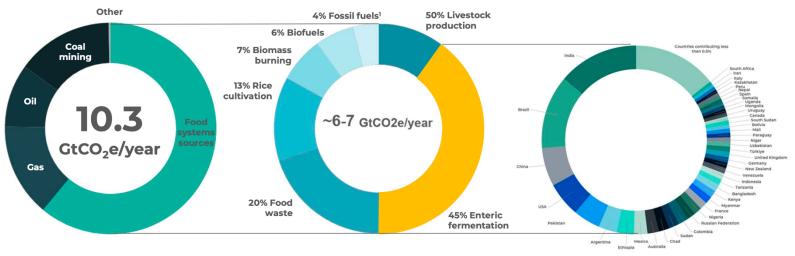
Independent, distinguished, multidisciplinary

Dr. Karen Beauchemin

Dr. Margaret Gill

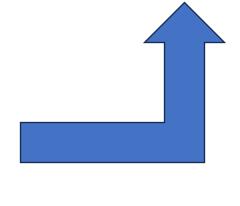
Dr. Robert Banks




Dr. Paul Wood

ENTERIC METHANE CONTRIBUTION TO GLOBAL AND FOOD SYSTEM METHANE

ENTERIC FERMENTATION R&D ACCELERATOR HOW WE'RE APPROACHING IT



It's a crowd-sourced exercise, guided by our **Science Oversight Committee**

Global anthropogenic methane emissions (2017)1

Food system methane emissions **Proportions of enteric** methane emissions

1/Saunois et. al 2020: Total anthropogenic emissions are based on estimates of a full anthropogenic inventory and not on the sum of the "agriculture and waste", "fossil fuels", and "biofuel and biomass burning" categories due to methodology of adding

2Hegarty RS, Cortez Passetti RA, Dittmer KM, Wang Y, Shelton S, Emmet-Booth J, Wollenberg E, McAllister T, Leahy S, Beauchemin K, Gurwick N. 2021. An evaluation of emerging feed additives to reduce methane emissions from livestock. Edition 1. A report coordinated by Climate Change, Agriculture and Food Security (CCAFS) and the New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC) initiative of the Global Research Alliance (GRA).

Protocols & network building

Data & phenotyping

Implementation: genetic evaluation & breeding program

1) Working Groups

WG1: Dairy global North

WG2: Small ruminants

WG3: Beef global North +

WG4: Asia

WG5: Africa

WG6: South America

WG7: Buffalo & ruminants

Research & Phenotyping proposals

- 2) Database
- legal
- technical
- organisation

3) Animal breeding research


Proposals under development (20 May 2024):

Area	#Proposals	Countries/region involved	Target #animals	\$ (when known)
Beef	3 (AUS; USA; Canada)	Aust., NZ, US, UK, Brazil, Ireland; US; Canada	28,000;10,000;?	10m;3m
Sheep	1 (AUS)	Aust., NZ., UK, Uruguay, Ireland	22,000	4.5m
Dairy	5 (J, Hol, Red, Brown, Holstein)	Denmark, NL; Italy ; Denmark, Italy, Canada; Austria, Germany and Switzerland; Poland;	20,000;?;?;?;?	0.5m; 0.5m ;1.5m;1.5m;3m
Region	4 (Africa, Latin America, Asia (2), Ethiopia)	4 countries Africa; UY, Arg, MX, BR; India, US; CH, Jap, India,; Ethiopia/NZ	?;14,000;?;?;?; 3000	6m;4.9m;?;?;0.5 m
Other	Impact analysis; Microbiome (SP, NL, NZ, AUS, DN, Africa eo); sniffer QA/protocols.			0.12; 2m;0.5m

ATF Mission: delivering knowledge and expertise

- Methane from energy should be tackled first can be cut the quickest and with least cost (EU Methane Strategy)
- Minimising biodegradable waste going into landfill should be a priority
- Agricultural emissions should be reduced as much as possible, but some methane emissions from livestock are unavoidable (unique ability to convert fibre to food)

Animal Genetics

Animal Health & Life-time efficiency

Manure management Feed strategies

RECOMMENDATIONS:

- Need of appropriate target for Agri CH4 (Policy level)
- Communicate; we can we deliver results (Breeders and farmers level)
- Developing and deploying methane mitigation tools needs correct support on Research and Innovation (Policy, breeders and farmers)

Take home messages

- Appropiate target for CH₄
- Animal genetics is an important mitigation tool for reducing it, as part of balanced and responsible breeding
- Animal genetics is cumulative and permanent
- Need to join forces on:

Communication Research

Implementation

What do we do?

Providing input for EU research and innovation agendas

Members (Research & private sector) Engaging in dialogue on sector innovation with key stakeholders in EU

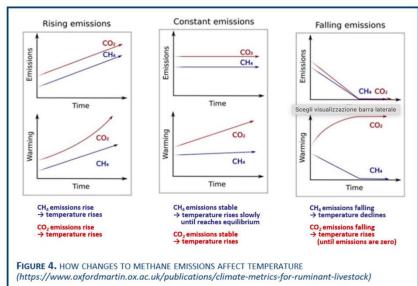
EU authorities NGOs and stakeholders

Enhancing cooperation in EU research & innovation

Enabling knowledge exchange and act as a source of expertise

Explore the topic through One-day symposium at EAAP (in collaboration with LFS **Study Commission)**

- · the role of methane
- · the different metrics to measure emissions
- mitigation levers at various scales

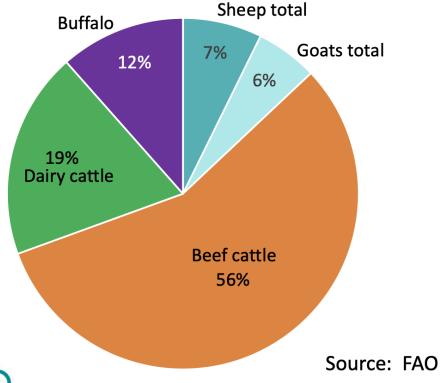

Disseminate the knowledge to policy makers and stakeholders in Brussels (Nov 2022)

- **Decision-making with impacts on** the livestock sector
- **Tools to mitigate**
- How to implement them

Why does CO₂ need to get to net zero while methane doesn't?

Methane has a short half life whereas CO2 in the remains atmosphere for a very long time

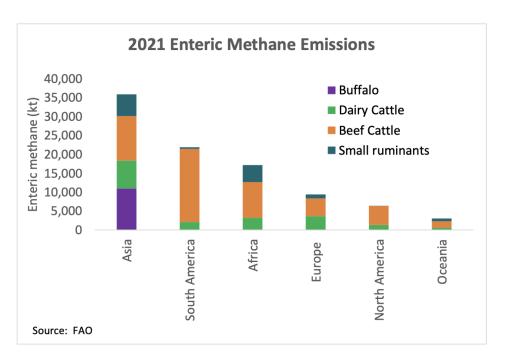
If methane emissions fall by 3% per decade, its impact on warming is roughly constant

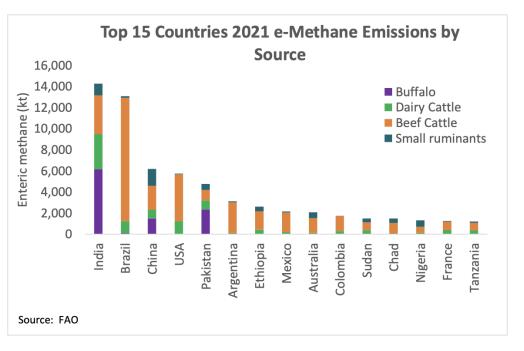


2021 FAO Livestock e-Methane (kt)

> Total enteric methane emissions from 5 major livestock species was 97,384 (kt) in 2021.

Species	Enteric Methane Emissions (kt)
Beef cattle	54,973
Dairy cattle	18,550
Buffalo	11,217
Sheep	7,088
Goats	5,556




abacusbio.

Livestock e-Methane by Livestock Class

- > Buffalo e-methane emissions: Asia 98% (India 55%, Pakistan 21%, China 13%).
- Dairy cattle e-methane emissions: Asia 40%, (Europe 20%, Africa 17%, South America 11%).
- > Beef cattle e-methane emissions: **South America** 35%, (Asia 21%, Africa 17%, North America 9%).
- Small ruminants e-methane emissions: Asia 45% (China 35%, India 24%, Pakistan 12%) and Africa 36%.

Animal Segment Emissions Clusters

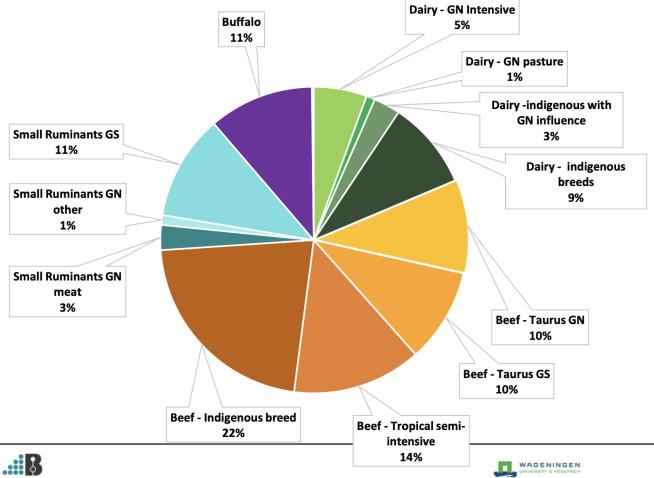
0.800–1.000 (very high) 0.350–0.549 (low) 0.700–0.799 (high) Data unavailable 0.550–0.699 (medium)

__World map

representing <u>Human</u>
<u>Development Index</u> categories
(based on 2019 data, published in 2020)

The terms "Global North" and "Global South" are not strictly

Cluster	Description
Dairy GN Intensive	Intensive, Holstein-dominated dairy systems in GN
Dairy GN Pastoral	Intensive, Holstein and crossbred pastoral dairy systems in GN
Dairy GS with GN Influence	GS systems with crossbred herds influenced by GN genetics
Dairy GS	GS systems incorporating a diverse range of indigenous breeds
Buffalo	Buffalo (milk & meat) predominately in GS
Beef Taurus GN	Intensive beef systems based on Bos taurus breeds in GN
Beef Taurus GS	Intensive and semi intensive beef systems based on <i>Bos taurus</i> breeds in GS
Beef Tropical semi-intensive	Bos indicus and tropical Bos taurus breeds managed in semi intensive systems in both GN and GS
Beef Indigenous	GS systems incorporating a diverse range of indigenous breeds
Small Ruminants GN meat	Intensive lamb and dual purpose systems in GN
Small ruminants GN other	Fibre and milking small ruminant systems in GN
Small ruminants GS	GS systems incorporating a diverse range of indigenous breeds
	Dairy GN Intensive Dairy GN Pastoral Dairy GS with GN Influence Dairy GS Buffalo Beef Taurus GN Beef Taurus GS Beef Tropical semi-intensive Beef Indigenous Small Ruminants GN meat Small ruminants GN other



Comparison of e-Methane per group

Livestock Segment		Enteric methane Emissions (kt)			
	Dairy GN Intensive	5,565			
	Dairy GN Pastoral	928			
	Dairy GS with GN Influence	2,783			
	Dairy GS	9,275			
	Beef Taurus GN	9,888			
	Beef Taurus GS	13,548			
	Beef Tropical semi-intensive	21,761			
	Beef Indigenous	2,603.70			
	Small Ruminants GN meat	1,027.40			
	Small ruminants GN other	11,055.80			
	Small ruminants GS	11,027			
	Buffalo	9,776			

What we can do?

Established a contact with these actors/players
 Disseminate the most relevat results
 Provide a WHFF Vademecum

Thank you